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Topic

The transport equation for rank two tensor fields:

{(at+3.,)g =0 in (0,T)xR"
9(0:‘):90 .
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Main Result

Given:
1. Vector field V in H'.
2. Initial rank two tensor field gg in L.
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Main Result

Given:
1. Vector field V in H'.
2. Initial rank two tensor field gg in L.
3. Finaltime T > 0.

If Sym DV € L™, then there exists in L (0, T; LT%(R")) a weak solution g of:

{(8t+5fv)g =0 in (0,T)xR"
9(0"):90 '
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Insight

Control of Sym DV important for well-posedness?
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Literature Overview

» DiPerna & Lions [2]: Scalar transport equation.
= Heumann et al. [4]: Extensions to transport of differential forms.
= Ambrosio [1]: Flows of non-smooth vector fields and applications.

» This thesis [3]: Transport of symmetric tensor fields of rank two.
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Thesis Outline

Chapters:
= Chapter 1 — Introduction

» Chapter 2 — Preliminaries

Chapter 3 — Scalar Transport Equation

Chapter 4 — Tensor Transport Equation

Chapter 5 — Future Work

Appendix A — Mollifiers
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Main Result

The Main Result

Theorem (4.5.2)
IfV € HY(R™" and Sym DV € L™, then there exists a weak solution to

3+ F)g=0 in (0,T)xR”

in L= (0, T; L°T2(R")) starting at any go € L2T*(R").
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Main Result

Proof Strategy

Outline as in DiPerna & Lions [2, Proposition II.1], but needs new techniques:
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Main Result

Proof Strategy

Outline as in DiPerna & Lions [2, Proposition II.1], but needs new techniques:

1. Consider the smoothed problems
(e >0)

(e)

{(at +Zy)9© =0 in (0,T)xR"
9o =9o0* be

for a mollifier family (¢¢)e>o.
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Main Result

Proof Strategy

Outline as in DiPerna & Lions [2, Proposition II.1], but needs new techniques:

1. Consider the smoothed problems

© (e >0)

{(at +Zy)9© =0 in (0,T)xR"
9o =9o0* be

for a mollifier family (¢¢)e>o.

2. Obtain family (g®) ., of strong solutions bounded in L% (0, T; L2T?(R™)).

e>0

3. Obtain weak solution as a weak*-subsequential limit of (g©) __,..
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Main Result

Notation

= [PT2(R™): Rank two tensor fields on R” in L”.
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Main Result

Notation

= [PT2(R™): Rank two tensor fields on R” in L”.
= Frobenius inner product on matricies / linear maps / bilinear forms:

(A,B), :=Tr(BTA) = ZA,,B,,
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Main Result

Notation

= [PT2(R™): Rank two tensor fields on R” in L”.
= Frobenius inner product on matricies / linear maps / bilinear forms:

(A,B), :=Tr(BTA) = ZA,,B,,

» Frobenius inner product on rank two tensor fields:

<g’h>L2T2(R”) = / <gX: dX— Z/ gljh’j ax.
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Smoothed Problems

Smoothed problems with conditions as in Theorem 4.5.2:

{(at+§zv<e>)g<€>=o in (0,T) xR"

g(()E) = go * Pe

Then:
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Smoothed problems with conditions as in Theorem 4.5.2:
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Smoothed Problems

Smoothed problems with conditions as in Theorem 4.5.2:

(€)

{(at +Zy)9© =0 in (0,T)xR"
go =(go * ¢)e

Then:
» V(9 js €* and Lipschitz (Lemma 3.4.4),

= g\ is C® and L2 (Lemma 2.3.7),
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Main Result

Smoothed Problems
Smoothed problems with conditions as in Theorem 4.5.2:

© (e > 0).

{(at +Zy)9© =0 in (0,T)xR"
go =(go * ¢)e

Then:
» V(9 js €* and Lipschitz (Lemma 3.4.4),

- g(()e) is C* and L? (Lemma 2.3.7),
= There exists a unique strong solution g¢ in C*(R™") (Proposition 4.1.1).
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Energy Estimates

Corollary (4.3.7)
If g is the unique C" strong solution to

(8:+F)g=0 in RxR"

starting at go € (C' N L2)T?>(R") for V Lipschitz and C?, then:
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Main Result

Energy Estimates

Corollary (4.3.7)
If g is the unique C" strong solution to

(8:+F)g=0 in RxR"

starting at go € (C' N L2)T?>(R") for V Lipschitz and C?, then:

/ Tr(9{g¢) dx < exp(C[ISym DV||;2t) /R Tr(glgo) dx (t > 0).
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Main Result

Energy Estimates

Corollary (4.3.7)
If g is the unique C" strong solution to

(8:+F)g=0 in RxR"

starting at go € (C' N L2)T?>(R") for V Lipschitz and C?, then:

/ Tr(9{g¢) dx < exp(C[ISym DV||;2t) / Tr(glgo) dx (t > 0).
n R”

In particular: g remains L? for all later times t > 0.
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Main Result

Energy Estimates

Energy estimates proved in two ways:
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Energy Estimates

Energy estimates proved in two ways:

1. Functional density estimation (88 4.2, 4.3):

(0: + V- V) Tr(g]ge) = -2 Tr((gth +97 gr)DV)-
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Main Result

Energy Estimates

Energy estimates proved in two ways:

1. Functional density estimation (88 4.2, 4.3):

(00+V - V) Tr(glge) = ~2Tr((9eq7 +9{ge)DV ).
2. Exact evolution of L2-energies (Proposition 4.3.6):

3t/ Tr(g/g¢) dx = / div(V) Tr(g{ge) - 2/ Tr((gtgtT +9{g¢) Sym DV) dx.
R R R
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Energy Estimates

Strong solutions thus satisfy uniform L?-bounds:

sup [lgelli2r2 < Crllgoll 2r2
o<t<T

with Cr := exp(C||Sym DV/| ;72 T).
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Energy Estimates

Strong solutions thus satisfy uniform L?-bounds:

sup [lgelli2r2 < Crllgoll 2r2
o<t<T

with Cr := exp(C||Sym DV/| ;72 T).

Hence g. € L*(0, T; L>T?(R")).

UNIVERSITY
OF OSLO

Main Result



Main Result

Boundedness of Smoothed Solutions

With g€ solving

© (e>0)

{(at + 3V<e>)g(€) =0 in (0,T)xR"
9o =90 * Pe

strongly with conditions as in Theorem 4.5.2:
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Main Result

Boundedness of Smoothed Solutions

With g€ solving

© (e>0)

{(at + 3V<e>)g(€) =0 in (0,T)xR"
9o =90 * Pe

strongly with conditions as in Theorem 4.5.2:

94w (orzrz) < XP(ClISYym DV [l wr2T)llgo * Pellizrz (€ > 0).
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Main Result

Boundedness of Smoothed Solutions

(9'9) .o is bounded in L®(0, T; L2T?(R™)):

UNIVERSITY
OF OSLO 16



Main Result

Boundedness of Smoothed Solutions

(9'9) .o is bounded in L®(0, T; L2T?(R™)):

190 * @elli2r2 < ClIgoll 272,

ISym DV @ || w2 = [[(Sym DV) * de|l,or2 < [|Sym DV|| ;oo 2.
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Compactness Criterion

Lemma (4.5.4)
Bounded sequences in L (0, T; [2T?(R" )) are sequentially precompact for the
weak*-topology.

Subtle...
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Main Result

Compactness Criterion

Lemma (4.5.4)
Bounded sequences in L (0, T; [2T?(R" )) are sequentially precompact for the
weak*-topology.

Subtle...

Lemma (3.4.6)
Bounded sequences in the dual F* of a separable Banach space F are sequentially
precompact for the weak*-topology.
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Main Result

Bochner Duality

Isometric isomorphism (Frobenius inner product):

L¥(0,T; L’T*(R™)) = L' (0, T; L’T*(R"))".
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Main Result

Bochner Duality

Isometric isomorphism (Frobenius inner product):

L¥(0,T; L’T*(R™)) = L' (0, T; L’T*(R"))".

 [2T%(R") has the Radon-Nikodym property (RNP).
= [’T*(R") ~ EB?Z L%(R") is separable.

= L1(0,T; L>T?(R")) is separable [5, Proposition 1.2.29].
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Main Result

Subsequence Extraction

There is a subsequence (g*), .., with ¥ — gin L=(0, T; L’T?(R")) weakly":

T T
(k)
/0 <9t ,‘Pt>L2T2 dt —>/0 (96 %) 25 dt

forall ¥ € L'(0, T; LT*(R")).
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Main Result

Subsequence Extraction

There is a subsequence (g*), .., with ¥ — gin L=(0, T; L’T?(R")) weakly":

T T
(k)
A <gl’ 4 1Pt>L2T2 dt — /0 <gt: IIIi’>L2T2 dt

forallw e L1(0, T; L>T?(R")).

Claim: This g is a weak solution.
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Main Result

Variational Formulation — Test Fields

Generalisation of definitions in DiPerna & Lions [2, p. 514]:
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Variational Formulation — Test Fields
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Main Result

Variational Formulation — Test Fields

Generalisation of definitions in DiPerna & Lions [2, p. 514]:
= F£: Finite-dimensional real vector space.
» P7(E): Smooth test fields ®: [0, T] x R” — E with

supp® cc [0,T) xR".
= § 3.2: Reqularity properties of test fields ® € 97(E), e.q.,

®@,: t — @, Lipschitz [0,T] — LP(R",E) (1 <p < o).
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Main Result

Variational Formulation — Tensor

Strong solutions satisfy a variational equation (Proposition 4.4.1):

T T
- /0 <gt’ (30‘13)t>L272 at — / <gl” qu)t>L2T2 dt
T
/0 <gt5 d|V(V)q)t>L2T2 d
T
+ 2/ <gt: Sym(DV)(I’t)Lsz dt
0

T
2/0' <gt1 (I)l’ Sym(DV)>L2T2 at = <gO, ¢)0>L2T2

for all ® € 27 (BilR").
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Main Result

Variational Formulation — Scalar

Compare with variational formulation for the scalar transport equation (8 3.3):

T T
—/ (ur, (30¢)t>Lz dt - / (ur, diV(V)¢t>Lz dt
0 0

.
- /o (ue, (V- V)@r) 2 dt = (uo, $o) 2

for all ¢ € Dr(R).
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Main Result

Variational Formulation — Tensor

Introduce (8 4.4):
B1(g, ®) = ‘/0T<gt, (80D):) 272 dt
By(g, ®) = /0T<gt, Ly D) 272 L,
B3(g, ®) = ‘/OT<gt,d|v(V)(I) ) 272 L,
B4(g, ®) == -2 /0 T(gt, Sym(DV)®;) 5, dt,
Bs(g, @) := -2 /O T(gt, @ Sym(DV)) ., dt.
UNIVERSITY
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Main Result

Weak Solutions (Definition 4.5.1)

Given V € H'(R™)" and G € L’T?(R"),
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Main Result

Weak Solutions (Definition 4.5.1)

Given V € H'(R™)" and G € L’T?(R"),

A weak solution to
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Main Result

Weak Solutions (Definition 4.5.1)

Given V € H'(R™)" and G € L’T?(R"),

A weak solution to
{(at +P)g=0 in (0,T)xR"

9o=0G

Isg € L>(0, T; L°T#(R™)) solving

5
- > Bi(g,®) = (G, Do) ., forall @ e Dr(BilR").
j=1
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Main Result

Existence of Weak Solutions

Sequence (g¥ of smoothed problems solve:
keN

5
- > B (g™, @) = (G % 1, ®o) oo (@ € Dr(BIR")).
J=1
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Main Result

Existence of Weak Solutions

Sequence (g¥ of smoothed problems solve:
keN

5
- > B (g™, @) = (G % 1, ®o) oo (@ € Dr(BIR")).
J=1

Send k — oo to obtain (recalling g¥) — g weakly*):

5
- Z B](g: CD) = <G: (DO>L2T2 (CI) € 9T(Bll Rn))
=
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Main Result

Conclusion

This concludes the proof of Theorem 4.5.2.
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Contributions | Overview

Chapter 2 — Preliminaries

Main contributions in Chapter 2:
» Distributions and convolution of maps with values in vector spaces.

= Weak advection operator on vector fields in LP for 1 < p < oo.

Lie decomposition formula.

Lie adjoint formula.

Lie derivative on Sobolev vector fields.
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Contributions | Overview

Chapter 3 — Scalar Transport Equation

Main contributions in Chapter 3:
= Explicit determination of LP-bounds on strong solutions.

= Generalised energy estimates (‘¢-energies’).
= Energy equivalence principle.
o Application: Exponential bound on Jacobian of flow.

o Application: Exponential bound on growth of volumes under the flow.

= Temporal LP-regularity of strong solutions.

= Temporal regularity considerations of test fields in 2r(E).
= Functional analytic principles for weak*-convergence.

= Smoothed Sobolev vector fields are also Lipschitz.

UNIVERSITY
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Contributions | Overview

Chapter 4 — Tensor Transport Equation

Main contributions in Chapter 4:
» Energy transport relation for non-linear functionals.

o Application: Functional density estimation technique.
o Application: Energy estimates (transport of L2-density).
o Application: Control of Tr g;, det g;, etc.

= Energy estimates for strong solutions in C' N 12,

Variational formulation.

Suggests a notion of weak solution when V is H'.
Existence result for weak solutions in L*(0, T; L2T?(R")).

UNIVERSITY
OF OSLO

Exact relation for the evolution of L?-energies of strong solutions.
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Highlight

We will take a closer look at these:

1. Lie derivative on H'.
2. Energy equivalence principle.

3. Energy transport relation.

UNIVERSITY
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Contributions | The Lie Derivative

The Lie Derivative

THE LIE DERIVATIVE ON SOBOLEV VECTOR FIELDS

UNIVERSITY
OF OSLO 32



Contributions | The Lie Derivative

Lie Adjoint

Frobenius adjoint of the Lie derivative (Proposition 2.7.1):

<‘g‘/g’ (I)>L2T2 = <g’ g\;k(I))LZTD

where
Sf\fd) = -Z® —div(V)® + 2Sym(DV)P + 2d Sym(DV).
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Contributions | The Lie Derivative

Lie Adjoint

Frobenius adjoint of the Lie derivative (Proposition 2.7.1):
<‘g‘/g’ (I)>L2T2 = <g’ g\;k(I))LZTD

where

Note: &£, ® is symmetric if @ is symmetric.
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Lid = —L,® — div(V)® + 2 Sym(DV)d + 2d Sym(DV).
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Contributions | The Lie Derivative

Lie Adjoint

Frobenius adjoint of the Lie derivative (Proposition 2.7.1):
<‘g‘/g’ (I)>L2T2 = <g’ g\;k(I))LZTD

where

Lid = —L,® — div(V)® + 2 Sym(DV)d + 2d Sym(DV).

Note: &£, ® is symmetric if @ is symmetric.

Note: £y is anti-symmetric up to terms of order zero.
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Contributions | The Lie Derivative

Lie Adjoint

Frobenius adjoint of the Lie derivative (Proposition 2.7.1):
<‘g‘/g’ (I)>L2T2 = <g’ g\;k(I))LZTD

where

Lid = —L,® — div(V)® + 2 Sym(DV)d + 2d Sym(DV).

Note: &£, ® is symmetric if @ is symmetric.
Note: £y is anti-symmetric up to terms of order zero.

Note: Zy + &, is of order zero.
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Contributions | The Lie Derivative

Lie Derivative on H'

H! (Rn)n ,,,,,,,,,,,, > B(Wl’OOT2, L2T2)

Figure: Extending the Lie derivative from smooth fields with compact support to H'.
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Contributions | The Lie Derivative

Lie Derivative on H'

Extension procedure (§ 2.8):
1. ForV € @(R")" and g € W">T?: Exists unique Z,g € L°T? such that:

(£v9, )2 = {0 L/ P) or

forall ® € DT?(R").

UNIVERSITY
OF OSLO 35



Contributions | The Lie Derivative

Lie Derivative on H'

Extension procedure (§ 2.8):
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1. ForV € @(R")" and g € W">T?: Exists unique Z,g € L°T? such that:

(£v9, )2 = {0 L/ P) or

forall ® € DT?(R").
2. %y € B(W"> T2, 1%T?) for such V.
3. The map V — % is H'-bounded
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Contributions | The Lie Derivative

Lie Derivative on H'

Extension procedure (§ 2.8):
1. ForV € @(R")" and g € W">T?: Exists unique Z,g € L°T? such that:

(£v9, )2 = {0 L/ P) or
forall ® € DT?(R").
2. %y € B(W"> T2, 1%T?) for such V.
3. The map V — % is H'-bounded
4. There is a unique extension to H' (R")".

UNIVERSITY
OF OSLO 35



Contributions | Energy Equivalence Principle

Energy Equivalence Principle

ENERGY EQUIVALENCE PRINCIPLE
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Contributions | Energy Equivalence Principle

Energy Equivalence Principle

Theorem (3.1.13)
Energy estimates in LP are equivalent with L*-bounds on the Jacobian of the flow:

{nJaccptuLw(Rn) < c(t)} - { [ lupax<co [ ool dx} (1<p <)

for strong solutions of the scalar transport equation:

(+V-V)ju=0 in RxR".
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Contributions | Energy Transport Relation

Energy Transport Relation (8 4.2)

ENERGY TRANSPORT RELATION
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Contributions | Energy Transport Relation

Energy Transport Relation (8 4.2)

If g is the C" strong solution to

0+ F)g=0 in RxR’

and ¥: Bil(R") — Ris a C" functional, then (Proposition 4.2.1):

(9c+ V- V)¥(ge) = —D¥(ge) ((DV) gt + g (DV)).

UNIVERSITY
OF OSLO
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Contributions | Energy Transport Relation

Energy Transport Relation (8 4.2)
Integrating the energy transport relation by parts:

oc [ w(go) dx - / div(V)B(ge) dx = - / D (ge) ((DV)  g; + ge(DV)) dix.
Rn Rn Rn

UNIVERSITY
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Contributions | Energy Transport Relation

Energy Transport Relation (8 4.2)

Functional density estimation:

|D‘P(9t)((DV)T9t + gt(DV))| < c(t)¥(g:)

for some control c: R — R,.

UNIVERSITY
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Contributions | Energy Transport Relation

Energy Transport Relation (8 4.2)

Functional density estimation:
[DW(ge) ((DV) ge + g (DV))| < c()®(gy)
for some control c: R — R,.

Leads to:

ER /n W(ge) dx < (Co+c(t)) /Rn W(g,) dx.

UNIVERSITY
OF OSLO
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Contributions | Energy Transport Relation

Energy Transport Relation (8 4.2)

Example (4.2.3)
With ¥(B) := Tr(B"B),

(3 +V - V) Tr(gtTgt) =-2 Tr((gtgtr + gtTgt)DV),

using DY (B)H = 2Tr(B"H).

UNIVERSITY
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Contributions | Energy Transport Relation

Energy Transport Relation (8 4.2)

Example (4.2.3)
With ¥(B) := Tr(B"B),

(00 +V - V) Tr(glge) = ~2Tr((9eq7 +9{ge)DV).
using DY (B)H = 2Tr(B"H).
Leads to energy estimates in L.

UNIVERSITY
OF OSLO
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Energy Transport Relation (8 4.2)

Example (4.2.5)

With W = Tr,
(8¢ + V- V) Trg; = =2Tr(Sym(DV)gy),

using DW(B) = Tr.

UNIVERSITY
OF OSLO
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Contributions | Energy Transport Relation

Energy Transport Relation (8 4.2)

Example (4.2.5)

With W = Tr,
(8¢ + V- V) Trg; = =2Tr(Sym(DV)gy),

using DW(B) = Tr.

If SymDV = O:
(8:+V-V)Trg, =0.

UNIVERSITY
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Energy Transport Relation (8 4.2)

Clearly not exhausted the potential of this technique.

Perhaps useful for uniqueness of weak solutions?

UNIVERSITY
OF OSLO

Contributions | Energy Transport Relation
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Contributions | Energy Transport Relation

Transport of the determinant

Energy transport relation suggests:

(8¢ + V- V) detgr = —2div(V) det g.

Proof.
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Contributions | Energy Transport Relation

Transport of the determinant

Energy transport relation suggests:

(8¢ + V- V) detgr = —2div(V) det g.

Proof.
With ¥ := det:
DW(B)H = det(B) Tr(B™'H) (B € GLs(R),H € Ms(R)).
UNIVERSITY
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Contributions | Energy Transport Relation

Transport of the determinant

Energy transport relation suggests:

(8¢ + V- V) detgr = —2div(V) det g.

Proof.
With W := det:

DW(B)H = det(B) Tr(B™'H) (B € GLs(R),H € Ms(R)).
Energy transport relation:

(01 +V - V) det(ge) = - det(g) Tr(g; " (DV) g + g; ' ge(DV) ). .

UNIVERSITY
OF OSLO 45



Contributions | Energy Transport Relation

Transport of determinant
Integrate (9; + V - V) det g, = =2 div(V) det g;:

at/ detgtdx:—/ div(V) det g; dx.
n Rn
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Contributions | Energy Transport Relation

Transport of determinant
Integrate (9; + V - V) det g, = =2 div(V) det g;:

at/ detgtdx:—/ div(V) det g; dx.
n Rn

If divVv = 0:

UNIVERSITY
OF OSLO 46



Contributions | Energy Transport Relation

Transport of determinant
Integrate (9; + V - V) det g, = =2 div(V) det g;:

at/ detgtdx:—/ div(V) det g; dx.
n Rn

If divV =0:
= (3:+V-V)detg; =0,

UNIVERSITY
OF OSLO 46



Contributions | Energy Transport Relation

Transport of determinant

Integrate (9; + V - V) det g, = =2 div(V) det g;:

at/ detgtdx:—/ div(V) det g; dx.
n Rn

If divV = 0:
= (3:+V-V)detg; =0,
= detg¢(x) = detgo(P_¢(x)),
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Contributions | Energy Transport Relation

Transport of determinant

Integrate (9; + V - V) det g, = =2 div(V) det g;:

at/ detgtdx:—/ div(V) det g; dx.
n Rn

If divV =0:
= (3:+V-V)detg; =0,
= det g;(x) = detgo(P_¢(x)),
= [detg,dx = [ detgodx.
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Further Results

Some results did not make it into the thesis.
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Further Results

Some results did not make it into the thesis.

1. New example that pointwise limits of measurables may fail to be
measurable.
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Further Results

Some results did not make it into the thesis.

1. New example that pointwise limits of measurables may fail to be
measurable.

2. New proof that pointwise limits of measurables are measurable when
valued in spaces second countable and regular (Tychonoff cube):

(M, A) = X = [ 10,11, = [0,1]k
neN

2([ 110.11) < @) #(10,11).

neN neN

and
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Future Work

Future Work

Properties of weak solutions (symmetry, positivity, ...)?

Sharp conditions for existence?

Uniqueness (renormalised solutions, energy transport relation, ...)?

Compare with flow techniques of weakly differentiable vector fields in
Ambrosio [1] and references therein.

UNIVERSITY
OF OSLO 48



Future Work

References I

Unqualified references (‘Theorem 4.5.2") are to [3].

[11 Luigi Ambrosio. ‘Well posedness of ODE’s and continuity equations with
nonsmooth vector fields, and applications'. In: Revista Matemdtica
Complutense 30.3 (2017), pp. 427-450.

[2] R.J.DiPerna and P. L. Lions. ‘Ordinary differential equations, transport
theory and Sobolev spaces'. In: Inventiones mathematicae 98.3 (Oct. 1989),
pp. 511-547.

[3]1 Simon Foldvik. ‘Weak Solutions of the Linear Transport Equation for Rank
Two Tensor Fields Under Sobolev Regularity’. Master’s thesis. University of
Oslo, 2024.

UNIVERSITY
OF OSLO

49



Future Work

References II

[4] H.Heumann, Ralf Hiptmair and Cecilia Pagliantini. ‘Stabilized Galerkin for
transient advection of differential forms'. In: Discrete and Continuous
Dynamical Systems Series S 9.1 (Feb. 2016), pp. 185-214.

[5] Tuomas Hytonen et al. Analysis in Banach Spaces. Volume I: Martingales and
Littlewood-Paley Theory. First Edition. A Series of Modern Surveys in
Mathematics 63. Cham, Switzerland: Springer, 2016.

UNIVERSITY
OF OSLO 50



Simon Foldvik

E-mail: simonfo@math.uio.no
Master’s Presentation
Simon Foldvik, Autumn 2024



simonfo@math.uio.no

	Main Result
	Contributions
	Overview
	The Lie Derivative
	Energy Equivalence Principle
	Energy Transport Relation

	Further Results
	Future Work
	References

