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Topic

The transport equation for rank two tensor fields:{(
𝜕t +ℒV

)
g = 0 in (0, T) × Rn

g(0, ·) = g0
.
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Main Result

Given:
1. Vector field V in H1.
2. Initial rank two tensor field g0 in L2.
3. Final time T > 0.

If SymDV ∈ L∞, then there exists in L∞
(
0, T ; L2T2(Rn)

)
a weak solution g of:{(

𝜕t +ℒV
)
g = 0 in (0, T) × Rn

g(0, ·) = g0
.
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Insight

Control of SymDV important for well-posedness?
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Literature Overview

DiPerna & Lions [2]: Scalar transport equation.

Heumann et al. [4]: Extensions to transport of differential forms.

Ambrosio [1]: Flows of non-smooth vector fields and applications.

This thesis [3]: Transport of symmetric tensor fields of rank two.
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Thesis Outline

Chapters:

Chapter 1 — Introduction

Chapter 2 — Preliminaries

Chapter 3 — Scalar Transport Equation

Chapter 4 — Tensor Transport Equation

Chapter 5 — Future Work

Appendix A — Mollifiers
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Main Result

The Main Result

Theorem (4.5.2)
If V ∈ H1(Rn)n and SymDV ∈ L∞, then there exists a weak solution to(

𝜕t +ℒV
)
g = 0 in (0, T) × Rn

in L∞
(
0, T ; L2T2(Rn)

)
starting at any g0 ∈ L2T2(Rn).
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Main Result

Proof Strategy

Outline as in DiPerna & Lions [2, Proposition II.1], but needs new techniques:

1. Consider the smoothed problems{(
𝜕t +ℒV (𝜖)

)
g(𝜖) = 0 in (0, T) × Rn

g(𝜖)
0 = g0 ∗ 𝜙𝜖

(𝜖 > 0)

for a mollifier family (𝜙𝜖)𝜖>0.

2. Obtain family
(
g(𝜖) )

𝜖>0 of strong solutions bounded in L∞
(
0, T ; L2T2(Rn)

)
.

3. Obtain weak solution as a weak∗-subsequential limit of
(
g(𝜖) )

𝜖>0.
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Main Result

Notation

LpT2(Rn): Rank two tensor fields on Rn in Lp.

Frobenius inner product on matricies / linear maps / bilinear forms:〈
A, B

〉
Tr B Tr

(
BTA

)
=
∑︁

ij
AijBij.

Frobenius inner product on rank two tensor fields:〈
g, h

〉
L2T2 (Rn ) B

∫
Rn

〈
gx, hx

〉
Tr dx =

∑︁
ij

∫
Rn

gijhij dx.
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Main Result

Smoothed Problems

Smoothed problems with conditions as in Theorem 4.5.2:{(
𝜕t +ℒV (𝜖)

)
g(𝜖) = 0 in (0, T) × Rn

g(𝜖)
0 = g0 ∗ 𝜙𝜖

(𝜖 > 0).

Then:

V (𝜖) is C∞ and Lipschitz (Lemma 3.4.4),
g(𝜖)

0 is C∞ and L2 (Lemma 2.3.7),
There exists a unique strong solution g(𝜖) in C∞(Rn+1) (Proposition 4.1.1).
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Main Result

Energy Estimates

Corollary (4.3.7)
If g is the unique C1 strong solution to(

𝜕t +ℒV
)
g = 0 in R × Rn

starting at g0 ∈ (C1 ∩ L2)T2(Rn) for V Lipschitz and C2, then:

∫
Rn
Tr
(
gT

t gt
)

dx ≤ exp
(
C∥SymDV ∥L∞T2t

) ∫
Rn
Tr
(
gT

0g0
)

dx (t ≥ 0).

In particular: gt remains L2 for all later times t ≥ 0.
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Main Result

Energy Estimates

Energy estimates proved in two ways:

1. Functional density estimation (§§ 4.2, 4.3):(
𝜕t + V · ∇

)
Tr
(
gT

t gt
)
= −2 Tr

( (
gtgT

t + gT
t gt

)
DV

)
.

2. Exact evolution of L2-energies (Proposition 4.3.6):

𝜕t

∫
Rn
Tr
(
gT

t gt
)

dx =

∫
Rn
div(V) Tr

(
gT

t gt
)
− 2

∫
Rn
Tr
( (

gtgT
t + gT

t gt
)
SymDV

)
dx.
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Main Result

Energy Estimates

Strong solutions thus satisfy uniform L2-bounds:

sup
0≤t≤T

∥gt∥L2T2 ≤ CT ∥g0∥L2T2

with CT B exp
(
C∥SymDV ∥L∞T2T

)
.

Hence g• ∈ L∞
(
0, T ; L2T2(Rn)

)
.
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Main Result

Boundedness of Smoothed Solutions

With g(𝜖) solving{(
𝜕t +ℒV (𝜖)

)
g(𝜖) = 0 in (0, T) × Rn
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g(𝜖)
•




L∞ (0,T ;L2T2 ) ≤ exp

(
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Main Result

Boundedness of Smoothed Solutions

(
g(𝜖) )

𝜖>0 is bounded in L∞
(
0, T ; L2T2(Rn)

)
:

∥g0 ∗ 𝜙𝜖∥L2T2 ≤ C∥g0∥L2T2 ,

∥SymDV (𝜖) ∥L∞T2 = ∥(SymDV) ∗ 𝜙𝜖∥L∞T2 ≤ ∥SymDV ∥L∞T2 .

16



Main Result

Boundedness of Smoothed Solutions

(
g(𝜖) )

𝜖>0 is bounded in L∞
(
0, T ; L2T2(Rn)

)
:

∥g0 ∗ 𝜙𝜖∥L2T2 ≤ C∥g0∥L2T2 ,

∥SymDV (𝜖) ∥L∞T2 = ∥(SymDV) ∗ 𝜙𝜖∥L∞T2 ≤ ∥SymDV ∥L∞T2 .

16



Main Result

Compactness Criterion

Lemma (4.5.4)
Bounded sequences in L∞

(
0, T ; L2T2(Rn)

)
are sequentially precompact for the

weak∗-topology.

Subtle. . .

Lemma (3.4.6)
Bounded sequences in the dual F∗ of a separable Banach space F are sequentially
precompact for the weak∗-topology.
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Main Result

Bochner Duality

Isometric isomorphism (Frobenius inner product):

L∞
(
0, T ; L2T2(Rn)

)
≃ L1 (0, T ; L2T2(Rn)

)∗
.

L2T2(Rn) has the Radon–Nikodym property (RNP).

L2T2(Rn) ≃
⊕n2

1 L2(Rn) is separable.

L1 (0, T ; L2T2(Rn)
)

is separable [5, Proposition 1.2.29].
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Main Result

Subsequence Extraction

There is a subsequence
(
g(k) )

k∈N with g(k) → g in L∞
(
0, T ; L2T2(Rn)

)
weakly∗:

∫ T

0

〈
g(k)

t ,Ψt

〉
L2T2

dt →
∫ T

0

〈
gt,Ψt

〉
L2T2 dt

for all Ψ ∈ L1 (0, T ; L2T2(Rn)
)
.

Claim: This g is a weak solution.
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Main Result

Variational Formulation — Test Fields

Generalisation of definitions in DiPerna & Lions [2, p. 514]:

E: Finite-dimensional real vector space.

𝒟T (E): Smooth test fields Φ : [0, T] × Rn → E with

suppΦ ⊂⊂ [0, T) × Rn.

§ 3.2: Regularity properties of test fields Φ ∈ 𝒟T (E), e.g.,

Φ• : t ↦→ Φt Lipschitz [0, T] → Lp(Rn, E) (1 ≤ p ≤ ∞).
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Main Result

Variational Formulation — Tensor
Strong solutions satisfy a variational equation (Proposition 4.4.1):

−
∫ T

0

〈
gt, (𝜕0Φ)t

〉
L2T2 dt −

∫ T

0

〈
gt,ℒVΦt

〉
L2T2 dt

−
∫ T

0

〈
gt, div(V)Φt

〉
L2T2 dt

+ 2
∫ T

0

〈
gt, Sym(DV)Φt

〉
L2T2 dt

+ 2
∫ T

0

〈
gt,Φt Sym(DV)

〉
L2T2 dt =

〈
g0,Φ0

〉
L2T2

for all Φ ∈ 𝒟T (BilRn).
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Main Result

Variational Formulation — Scalar

Compare with variational formulation for the scalar transport equation (§ 3.3):

−
∫ T

0

〈
ut, (𝜕0𝜙)t

〉
L2 dt −

∫ T

0

〈
ut, div(V)𝜙t

〉
L2 dt

−
∫ T

0

〈
ut, (V · ∇)𝜙t

〉
L2 dt =

〈
u0, 𝜙0

〉
L2

for all 𝜙 ∈ 𝒟T (R).
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Main Result

Variational Formulation — Tensor
Introduce (§ 4.4):

B1(g,Φ) B
∫ T

0

〈
gt, (𝜕0Φ)t

〉
L2T2 dt,

B2(g,Φ) B
∫ T

0

〈
gt,ℒVΦt

〉
L2T2 dt,

B3(g,Φ) B
∫ T

0

〈
gt, div(V)Φt

〉
L2T2 dt,

B4(g,Φ) B −2
∫ T

0

〈
gt, Sym(DV)Φt

〉
L2T2 dt,

B5(g,Φ) B −2
∫ T

0

〈
gt,Φt Sym(DV)

〉
L2T2 dt.
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Main Result

Weak Solutions (Definition 4.5.1)

Given V ∈ H1(Rn)n and G ∈ L2T2(Rn),

A weak solution to {(
𝜕t +ℒV

)
g = 0 in (0, T) × Rn

g0 = G

Is g ∈ L∞
(
0, T ; L2T2(Rn)

)
solving

−
5∑︁

j=1
Bj(g,Φ) =

〈
G,Φ0

〉
L2T2 for all Φ ∈ 𝒟T (BilRn).
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(
0, T ; L2T2(Rn)

)
solving

−
5∑︁

j=1
Bj(g,Φ) =

〈
G,Φ0

〉
L2T2 for all Φ ∈ 𝒟T (BilRn).
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Existence of Weak Solutions
Sequence

(
g(k) )

k∈N of smoothed problems solve:

−
5∑︁

j=1
B(k)

j
(
g(k) ,Φ

)
=
〈
G ∗ 𝜙k,Φ0

〉
L2T2 (Φ ∈ 𝒟T (BilRn)).

Send k → ∞ to obtain (recalling g(k) → g weakly∗):

−
5∑︁

j=1
Bj(g,Φ) =

〈
G,Φ0

〉
L2T2 (Φ ∈ 𝒟T (BilRn)).
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Conclusion

This concludes the proof of Theorem 4.5.2.
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Contributions | Overview

Chapter 2 — Preliminaries

Main contributions in Chapter 2:

Distributions and convolution of maps with values in vector spaces.

Weak advection operator on vector fields in Lp for 1 ≤ p < ∞.

Lie decomposition formula.

Lie adjoint formula.

Lie derivative on Sobolev vector fields.
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Contributions | Overview

Chapter 3 — Scalar Transport Equation

Main contributions in Chapter 3:
Explicit determination of Lp-bounds on strong solutions.
Generalised energy estimates (‘𝜙-energies’).
Energy equivalence principle.

Application: Exponential bound on Jacobian of flow.
Application: Exponential bound on growth of volumes under the flow.

Temporal Lp-regularity of strong solutions.
Temporal regularity considerations of test fields in 𝒟T (E).
Functional analytic principles for weak∗-convergence.
Smoothed Sobolev vector fields are also Lipschitz.
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Contributions | Overview

Chapter 4 — Tensor Transport Equation

Main contributions in Chapter 4:
Energy transport relation for non-linear functionals.

Application: Functional density estimation technique.
Application: Energy estimates (transport of L2-density).
Application: Control of Tr gt, det gt, etc.

Energy estimates for strong solutions in C1 ∩ L2.
Exact relation for the evolution of L2-energies of strong solutions.
Variational formulation.
Suggests a notion of weak solution when V is H1.
Existence result for weak solutions in L∞(0, T ; L2T2(Rn)).
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Contributions | Overview

Highlight

We will take a closer look at these:

1. Lie derivative on H1.

2. Energy equivalence principle.

3. Energy transport relation.

31



Contributions | The Lie Derivative

The Lie Derivative

The Lie Derivative on Sobolev Vector Fields
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Contributions | The Lie Derivative

Lie Adjoint

Frobenius adjoint of the Lie derivative (Proposition 2.7.1):〈
ℒV g,Φ

〉
L2T2 =

〈
g,ℒ∗

V Φ
〉

L2T2 ,

where
ℒ

∗
V Φ = −ℒVΦ − div(V)Φ + 2 Sym(DV)Φ + 2Φ Sym(DV).

Note: ℒ∗
V Φ is symmetric if Φ is symmetric.

Note: ℒV is anti-symmetric up to terms of order zero.
Note: ℒV +ℒ

∗
V is of order zero.
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Contributions | The Lie Derivative

Lie Derivative on H1

H1(Rn)n B
(
W 1,∞T 2, L2T 2)

D(Rn)n L

Figure: Extending the Lie derivative from smooth fields with compact support to H1.
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Contributions | The Lie Derivative

Lie Derivative on H1

Extension procedure (§ 2.8):
1. For V ∈ 𝒟(Rn)n and g ∈ W1,∞T2: Exists unique ℒV g ∈ L2T2 such that:〈

ℒV g,Φ
〉

L2T2 =
〈
g,ℒ∗

V Φ
〉

L2T2

for all Φ ∈ 𝒟T2(Rn).

2. ℒV ∈ B
(
W1,∞T2, L2T2) for such V .

3. The map V ↦→ ℒV is H1-bounded

𝒟(Rn)n V ↦→ℒV−−−−−→ B
(
W1,∞T2, L2T2) .

4. There is a unique extension to H1(Rn)n.
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Energy Equivalence Principle

Energy Equivalence Principle
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Contributions | Energy Equivalence Principle

Energy Equivalence Principle

Theorem (3.1.13)
Energy estimates in Lp are equivalent with L∞-bounds on the Jacobian of the flow:{

∥JacΦt∥L∞ (Rn ) ≤ c(t)
}
≃
{∫
Rn
|ut |p dx ≤ c(t)

∫
Rn
|u0 |p dx

}
(1 ≤ p < ∞)

for strong solutions of the scalar transport equation:(
𝜕t + V · ∇

)
u = 0 in R × Rn.
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Contributions | Energy Transport Relation

Energy Transport Relation (§ 4.2)

Energy Transport Relation
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Contributions | Energy Transport Relation

Energy Transport Relation (§ 4.2)

If g is the C1 strong solution to(
𝜕t +ℒV

)
g = 0 in R × Rn

and Ψ : Bil(Rn) → R is a C1 functional, then (Proposition 4.2.1):(
𝜕t + V · ∇

)
Ψ(gt) = −DΨ(gt)

(
(DV)Tgt + gt (DV)

)
.
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Contributions | Energy Transport Relation

Energy Transport Relation (§ 4.2)

Integrating the energy transport relation by parts:

𝜕t

∫
Rn

Ψ(gt) dx −
∫
Rn
div(V)Ψ(gt) dx = −

∫
Rn

DΨ(gt)
(
(DV)Tgt + gt (DV)

)
dx.
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Contributions | Energy Transport Relation

Energy Transport Relation (§ 4.2)

Functional density estimation:��DΨ(gt)
(
(DV)Tgt + gt (DV)

) �� ≤ c(t)Ψ(gt)

for some control c : R→ R+.

Leads to:
𝜕t

∫
Rn

Ψ(gt) dx ≤
(
C0 + c(t)

) ∫
Rn

Ψ(gt) dx.
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Contributions | Energy Transport Relation

Energy Transport Relation (§ 4.2)

Example (4.2.3)
With Ψ(B) B Tr

(
BTB

)
,(

𝜕t + V · ∇
)
Tr
(
gT

t gt
)
= −2 Tr

( (
gtgT

t + gT
t gt

)
DV

)
,

using DΨ(B)H = 2 Tr
(
BTH

)
.

Leads to energy estimates in L2.
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Energy Transport Relation (§ 4.2)

Example (4.2.5)
With Ψ B Tr, (

𝜕t + V · ∇
)
Tr gt = −2 Tr

(
Sym(DV)gt

)
,

using DΨ(B) = Tr.

If SymDV = 0: (
𝜕t + V · ∇

)
Tr gt = 0.
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Energy Transport Relation (§ 4.2)

Example (4.2.5)
With Ψ B Tr, (

𝜕t + V · ∇
)
Tr gt = −2 Tr

(
Sym(DV)gt

)
,

using DΨ(B) = Tr.

If SymDV = 0: (
𝜕t + V · ∇

)
Tr gt = 0.
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Energy Transport Relation (§ 4.2)

Clearly not exhausted the potential of this technique.

Perhaps useful for uniqueness of weak solutions?
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Contributions | Energy Transport Relation

Transport of the determinant
Energy transport relation suggests:(

𝜕t + V · ∇
)
det gt = −2 div(V) det gt .

Proof.

With Ψ B det:

DΨ(B)H = det(B) Tr
(
B−1H

)
(B ∈ GLn(R),H ∈ Mn(R)).

Energy transport relation:(
𝜕t + V · ∇

)
det(gt) = − det(gt) Tr

(
g−1

t (DV)Tgt + g−1
t gt (DV)

)
. ■
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Transport of determinant

Integrate
(
𝜕t + V · ∇

)
det gt = −2 div(V) det gt:

𝜕t

∫
Rn
det gt dx = −

∫
Rn
div(V) det gt dx.

If div V = 0:(
𝜕t + V · ∇

)
det gt = 0,

det gt (x) = det g0
(
Φ−t (x)

)
,∫

det gt dx =
∫
det g0 dx.
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Further Results

Some results did not make it into the thesis.

1. New example that pointwise limits of measurables may fail to be
measurable.

2. New proof that pointwise limits of measurables are measurable when
valued in spaces second countable and regular (Tychonoff cube):

(M,A) u−→ X ↩→
∏
n∈N

[0, 1]n
𝜋k−→ [0, 1]k

and
ℬ

(∏
n∈N

[0, 1]n

)
⊆
⊗
n∈N

ℬ( [0, 1]n).
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Future Work

Future Work

Properties of weak solutions (symmetry, positivity, . . . )?

Sharp conditions for existence?

Uniqueness (renormalised solutions, energy transport relation, . . . )?

Compare with flow techniques of weakly differentiable vector fields in
Ambrosio [1] and references therein.
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